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1.1 INTRODUCTION 

Aurora Place is a landmark mixed use development situated in the core of 
Sydney's Central Business District on the site of the former State Office Block. 
 The project, completed in December 2000, comprises a 44 level office 
tower, 18 level residential building and supporting retail facilities. The 4,262 
square metre site is bounded by Phillip Street, Bent Street and Macquarie Street. 
 Aurora Place has been developed by Lend Lease and East Asia Property 
Group, the extraordinary design is the work of world renowned architect Renzo 
Piano. Bovis Lend Lease is responsible for the project management of the design 
and construction. 
 The office tower at Aurora Place has a net lettable area of 49,500 m2 and 
has attracted several pre-eminent companies as tenants such as ABN-Amro, 
Minter Ellison, Challenger International and the Executive Centre. The office 
tower not only boasts a prime location, landmark design and quality, it also rates 
as one of Sydney's most efficient and effective office towers. 

 

Figure 1.1 East view of Aurora Place Development. 
 
 The residential building at Aurora Place is known as Macquarie Apartments 
and comprises 62 luxury residences, all of which enjoy unobstructed views across 
the Royal Botanic Gardens to Sydney Harbour and the Opera House.  
 This paper deals primarily with the structural design aspects of the 
commercial office tower. 

1.2 BASIC BUILDING STATISTICS 

The following statistics summarise some of the key features of the commercial 
tower: 
• Number of commercial levels – 38 
• Dedicated plant levels – Levels 3, 21, 42 and 44 
• Number of basement levels - 4 
• Floor to floor height of commercial floors - 3720mm 
• Ceiling height to office levels – 2700mm 
• Approximate NLA commercial floor areas including wintergardens (square 

metres) – 1,285 LR, 1,358 MR, 1,435 HR 
• Core areas (square metres) – 354 LR, 324 MR, 260 HR 
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• Overall building height (to top of sail) – 200 metres 
• Core slenderness ratio (height/depth) - 21 
• Maximum lateral east-west sway movements – 300mm 
• Tower building frame lowest natural frequency – 0.18 hertz 
• Stability frame – No outriggers used, building stability relies on combined 

frame action on core, floors and columns 
• Average overall axial shortening of tower frame due to creep and shrinkage – 

75mm 
• Volume of concrete used – 35,000 cubic metres 
• Tonnes of reinforcement used – 6,200 tonnes 
• Tonnes of post-tensioning used – 350 tonnes 
• Tonnes of structural steel used – 650 tonnes 
• Overall construction time including site demolition – 4 years 

1.3 DEMOLITION OF THE STATE OFFICE BLOCK 

As sites become scarce for tall buildings, these types of projects usually involve 
consolidation of land which often require demolition work. 
 This preliminary work is almost synonymous with tall building projects and 
are often complex. 
 The Aurora Place project was no exception.  The site to be cleared involved 
the "de-building" of a 31 storey building, a 12 storey building and a 9 storey 
building. Known as the NSW State Office Block, the buildings were completed in 
the mid 1960’s. 
 Obtaining information on these buildings is often difficult and often 
requires a significant level of exploratory work to analyse and understand the 
structures to be demolished. 
 Preparation and detailed planning with an integrated team of structural 
engineers and the builder was the key to the success of this "de-building" project. 
 

Figure 1.2 State Office Block tower demo lition. 

 
 The main building included a large central core of 6 lift banks, including in 
total 18 lift shafts. 
 The floor plates included steel beams and composite columns with a slab on 
ribbed sheet metal which had no shear studs attachment to the beams. 
 The integrated team evolved a method of "de building" that produced a 2.5 
day cycle per floor. 
 This was an outstanding achievement and saved 4 months on the overall 
project program. 
 In the process, 98% of the base building material was recycled and the de-
building work was completed with an outstanding safety record. 
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1.4 SITE GEOLOGY AND FOUNDATIONS 

As the site was formerly occupied by the State Office Block between two and 
three levels of basements had been previously constructed over the entire site.  
The proposed development required that the excavation be extended into the 
Hawkesbury Sandstone by a further 10metres to allow for the construction of two 
additional basement levels. 
 Maximum tower column working loads are in the order of 40,000kN and are 
supported on reinforced pad footings.  The central core having a total working 
load in the order of 730,000kN is supported on a 1.5 metre thick continuous core 
raft projecting 1.5 metres beyond the external perimeter wall lines. 
 Founded onto Class II and III sandstone, the design bearing pressures vary 
between 3.0MPa to 6.0MPa as recommended by the geotechnical investigation 
work carried out by Coffey Partners International Pty Ltd. 
 The existing reinforced concrete basement walls of the State Office Block 
building were retained and underpinned along Bent Street to maintain support for 
the roadway and high voltage electrical cables.  Temporary support of the other 
boundaries was achieved using conventional methods such as anchored soldier 
piles and shotcrete walls. 

 

Figure 1.3 Core raft construction. 

 

Figure 1.4 Axial core stresses at raft interface. 
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1.5 BUILDING CODES AND REGULATIONS 

The structural design of the building has been carried out in accordance with the 
relevant SAA Codes and the Building Code of Australia.  Fire engineering 
principles were adopted where appropriate dispensations could be sought by 
Sydney City Council and other relevant authorities. 
 From a structural engineering viewpoint, fire engineering design principles 
were applied to the composite structural steel floors, roof and sail elements 
above Level 41 to assist with the deletion of traditional fire rated steel 
construction.  Active sprinkler systems were used throughout the building. 
 

 

Figure 1.5 Level 42 plant room needle columns and steel framing. 

1.6 STRUCTURAL FRAMING DETAILS 

The structural elements of the commercial office tower can be considered as two 
basic components, the primary building frame and the secondary structural facade 
support elements attached to the building frame. 
 The primary building frame is mostly constructed from a combination of 
reinforced and post-tensioned concrete.  Composite structural steel has also been 
used for the accelerated building frame structures erected to Level 3 and the 
plantroom roof elements. 
 The secondary structural elements are constructed from structural steel and 
interact directly with the projecting external facade components.  These elements 
are termed fins, tusks, sails and mast.  Dog-bone mullions manufactured from 
aluminium are used and span between the cantilevered secondary steel support 
members.  The externalised glass panels are supported directly from the dog-
bones with silicon only. 

1.7 BUILDING FRAME AND LATERAL STABILITY 

The reinforced concrete core works integrally with the floor plates and columns 
to form a combined moment resisting frame.  The distribution of loads to the 
core, floors and columns has been determined by finite element analyses.  The 
wind loads applied to the building have been verified by aeroelastic wind tunnel 
model tests carried out by MEL Consultants at the Department of Mechanical 
Engineering, Monash University. 
 The frame action of the core, slabs and tower columns contribute to the 
lateral stability of the building.  This requires that the floor-to-core connection be 
designed to resist the applied frame moments.  Each floor acts as a mini-outrigger 
eliminating the need to adopt a centralised floor to floor outrigger system that 
would normally occupy valuable space within the building. 
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Figure 1.6 Core stresses. 

 
 A 320mm thickened slab around the core enhances the floor to core 
moment connection.  Two layers of 20mm diameter screwed couplers are placed 
continuously at 150mm centres and splicing with top and bottom reinforcement 
to provide a continuous connection for the thickened slab to the core. 

 
 

Figure 1.7 Core jumpform construction. 

 
 The core provides 70% of the lateral load stiffness and the remaining 30% 
is taken by the combined frame action of the slabs and tower columns. 
 The lozenge shaped reinforced concrete core has a maximum width of 9.5m.  
Permanently anchoring the 1.5 metre thick core raft into the bedrock provides 
base fixity of the core structure.  Along the perimeter of the outer core walls, ten 
permanent rock anchors each of 8000kN working load capacity were drilled 
through the core raft and anchored approximately 16 metres into the sandstone 
bedrock.  The ground anchors ensure that no net tension results under the raft 
when the most adverse lateral and eccentric load conditions are applied to the 
building frame. 
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Figure 1.8 Finite element model cross section. 

 
 A view of the broad elevation of the core shows how corbelling out of the 
main walls above the lobby level and car park entry transfers the northern and 
southern ends of the building.  The corbelling extends the core by 10 metres 
approximately in the north and south directions along its longitudinal axis. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.9 Graph of lateral load distribution. 
 

 To form a concierge through link at the lobby level an opening was made 
through the main walls adjacent to the high rise lift lobby. The structural opening 
through the eastern and western core walls is 5.0 metres high by 5.9 metres long.  
To transfer the truncated perimeter wall loads 3.0 metre deep by 1.0 metre wide 
reinforced concrete lintel beams are flinched to the core walls above the 
openings.  A 1200mm thick reinforced concrete plate spans between the flinched 
beams to support the secondary walls located above the concierge. 
 Verticality of the core under eccentric dead and live loads was maintained 
by ensuring that the stress levels in the outer walls were similar on both sides.  
This was achieved by tuning the main perimeter wall thicknesses, resulting in a 
500mm base wall thickness on the eastern side and a 400mm base wall thickness 
on the western side.  Concrete strength for the core walls varied between 60MPa 
and 32MPa. 
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Figure 1.10 Aurora tower construction. 

 
 Splitting the jump form system into two segments enabled construction of 
the core to be carried out more efficiently.  Screwed coupler bars are used to join 
the construction joint match lines of the core segments. 

1.8 BASEMENT AND LOBBY FLOORS 

For the commercial tower up to four basement levels extend out to the perimeter 
of the site.  A combination of reinforced and post-tensioned band beams 
supporting reinforced slabs have been used to frame out the basement carparks, 
ramps, loading docks and plant areas.  Earth pressures below the ground level are 
resisted by concrete retaining walls braced by the diaphragm action of the 
basement floors. 

1.9 ACCELERATED TOWER CONSTRUCTION 

 Utilising composite structural steel framing, Level 3 floor plate of the 
tower and the twelve perimeter columns were constructed under accelerated 
conditions to facilitate a work front above and ahead of the final site excavation 
and prior to the construction of the basement and lobby floors.  Prefabricated 
reinforced cages were fixed inside 12mm thick tubular steel column form liners 
measuring 1250mm in diameter.  The tubular steel forms were then filled with 
high strength concrete pumped from their base up to a height of 25 metres. 
 Basement slabs were connected to the tubular steel liners with internal and 
external stud attachments and lintel flange plates coinciding with the relevant 
floor levels. 

 

Figure 1.11 Corbelled south core above lobby level. 
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 The typical floor table formwork system was then introduced.  The enhanced 
structural capacity provided by the composite beam action alleviated the need for 
back propping of the formwork system below Level 3. 

 

Figure 1.12 Accelerated Level 3 structural steel framing. 

1.10 TYPICAL OFFICE FLOORS 

The typical office floor slabs span from the core a distance of 10.8 metres to the 
west and 12.0 metres to the east to the perimeter beams.  Six tower columns, 
spaced at 10.8 metre centres, support the floors each side of the core and are 
located along the curved east and west building perimeter.  The floor plates 
cantilever at the four corners of the structure.  The south-east corner of the tower 
structure gradually extends and leans eastward at every level.  Summation of this 
floor to floor incremental offsets results in a 5.0 metre change in span of the 
edge beam between Level 3 and Level 41. 

 

Figure 1.13 High rise floor deflections contours. 

 
 Notched post-tensioned band beams spanning between the core and the 
perimeter beams have been designed to a minimum depth to optimise services 
clearances and are typically 470mm deep and 600mm wide.  The beam-ends are 
notched 150mm for a length of 1.3 metres.  This allows the underside attachment 
of the live end anchorages and stressing of the post-tensioning cables.  The floor 
beams are spaced radially at 2.7m centres and support a 120mm thick mesh 
reinforced concrete floor plate.  The floor to floor height is typically 3.72 
metres.  Perimeter edge beams are 880mm deep x 400mm wide and cantilever 
northwards and southwards to support the wintergardens and projecting facade 
elements.  The edge beams and attached facade elements (fins) cantilever in some 
instances in excess of 10 metres beyond the first internal column. 
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Figure 1.14 Finite element model of typical floor soffit framing. 
 

 Located continuously for a 2.0 metre width around the perimeter of the 
core, a 320 mm thickened slab section provides connection of the band beams to 
the core.  The thickened slab section transfers the plate bending  moments and in-
plane diaphragm actions generated in the floors to the core walls.  
Circumferential post-tensioned cables are located within the thickened slab 
adjacent to the core.  The curved plan profile of these cables assists in applying 
extraneous in-plane forces from the floors to the core similar to the concept of 
placing an elastic rubber band around the perimeter of the core.  These cables also 
restrain the forces generated by the cantilevered and corbelled core walls located 
on the northern and southern ends of the building. 

 

Figure 1.15 High rise floor framing plan. 
 
 
 

Figure 1.16 Aerial view of the core and floor construction. 
 

 The typical floors are generally designed for the following loads: 
 
Live loads  3.0kPa 
Partitions  1.0kPa 
Services and ceilings 0.5kPa  
Raised computer floors 0.6kPa 
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Figure 1.17 Typical floor band connection to the outer core wall. 
 

 Structural provision at four locations between slab bands has been made for 
additional penetrations through the floors to take the loads imposed by tenant 
specified  interconnecting stairs. 

1.11 PLANTROOM FLOORS AND ROOF 

Double height plantrooms are located at Level 21 and Level 42 and the floors 
have a similar structural configuration as a typical floor.  The required enhanced 
live load capacity of 7.5kPa for equipment is obtained by increasing the overall 
structural depth to 500mm and providing additional post-tensioning cables and 
reinforcement in the bands and slabs.  Level 3 and the roof slab at Level 44 are 
supported from composite steel beams and profiled steel sheeting.  The surfaces 
of external areas and wet areas are cast integrally with falls to assist with drainage 
and waterproofing. 

1.12 STRUCTURAL ANALYSIS 

Bovis Lend Lease structural engineers used Straus7 finite element program to 
perform numerous structural analyses on the building frame of the commercial 
tower. 
 A rigorous structural analysis of the tower building frame was carried out to 
comply with Clause 7.8 of AS3600, Concrete Structures Code. The analysis of 
the building frame takes into account the relevant material properties, geometric 
effects, three-dimensional effects and interaction with the foundations. 
 The principal aim of the analysis was to effectively predict the structural 
behaviour of the unique shape of the tower frame subjected to various static and 
dynamic loading conditions. These loading conditions were generated from 
combinations of superimposed dead loads, live loads, wind loads and seismic 
loads. 
 Static load combinations complying with the relevant Australian Standards 
provided realistic predictions of the actions of the building frame, particularly 
due to applied lateral loads and eccentric gravity loads. 
 
 The dynamic response of the structure also needed to be assessed to 
evaluate the natural frequencies of the tower frame and consequently the response 
of the structure in terms of perceptible building accelerations. 
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Figure 1.18 Natural frequency modal shapes. 

 
 A finite element linear buckling analysis enabled the determination of the 
tower column effective lengths, which then assisted with their final detailed 
design. 
 The columns measure 1250mm diameter up to Level 3, then change to a 
reducing rectangular shape through the tower.  The low-rise column 
measurements are 1200mm x 800mm, the mid-rise columns are 1200mm x 
650mm and the high-rise columns are 1200mm x 500mm. 
 A suitable mesh grading to model the floor in plate elements was developed. 
Five plate element properties were used per level to account for the end notching 
of the beams and slab thickening around the core. Straus7 allowed the use of 
different membrane and bending thicknesses for each plate property. Beam 
elements were used to model the perimeter beams. The self-weight of the 
structure could be determined by assigning plate densities. Superimposed floor 
loads and live loads were applied as face pressures to plate elements. 
 Plate elements were used to simulate the facade of the building. The facade 
plate elements were a Quad4 Plate/Shell type, each node connected to the 
structural beam elements. The lateral wind pressures were then applied to the face 
of these plate elements. 
 The linear static, non-linear static, natural frequency and linear buckling 
solvers were used to evaluate the structural behaviour of the tower frame. Linear 
static analyses were used to predict the structural behaviour of the structural 
elements for a combination of lateral loads and eccentric vertical loads. 
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Figure 1.19 Aero-elastic model of Aurora tower. 

 
 The moment distribution of the lateral load between the core and the frame 
was also evaluated. It was important that a sensitivity analysis be carried out to 
account for the varying stiffness of the slab-core and slab-column connection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.20 Typical floor slab bending moments. 
 

 The sub-modelling feature in Straus7 was used to study the detailed actions 
of the structural components in critical areas. This was achieved by using a much 
finer mesh in these areas compared to the coarser mesh of the global model. The 
sub-modelling feature allowed the bending moments, shear forces and axial 
forces to be found for the subsequent design of each structural component using 
the results of the global model. 
 A sensitivity analysis was also performed on the model by varying the 
dynamic and static moduli of the structural sections. This enabled the range of 
possible natural frequencies for the tower to be determined. 

Figure 1.21 Westerly wind pressures apply to global FEM model. 
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 The occupancy comfort was gauged by a study on the accelerations of the 
building under dynamic loading conditions.  For the lowest natural frequency, the 
calculated building frame accelerations were compared to maximum peak 
recommended values for a mean wind return period of 0.5, 1, 5 and 10 years as 
set out by AS1170 Part 2, Wind Loading code. 

 

Figure 1.22 Building accelerations for occupancy comfort. 
 
 

 The base finite element model has the following statistics: 
 
Number of nodes   36,097 
Number of beam elements 4,840 
Number of plate elements  38,566 
Number of equations  215,856 
Run time   7 hours approximately 
 
The model was run in excess of 160 times to evaluate the sensitivity and effect of 
different structural parameters relating to the building frame. 

 
 

Figure 1.23 Lateral deflection of core elements. 
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1.13 CONCRETE QUALITY 

For the project, the specified concrete 28-day strengths varied between 32MPa 
and 80MPa.  High performance concrete was used to control long-term 
differential elastic axial shortening, shrinkage and creep between the columns and 
core walls.  All concrete mixes were super-plasticised and the maximum 56-day 
shrinkage was limited to 600 micro-strain.   
 By way of trying to equate the overall axial elastic shortening, shrinkage and 
creep between the core and tower columns, the concrete shrinkage specified for 
the concrete used in the columns was limited to 450 micro-strain compared to 
600 micro-strain used for the core. 

1.14 FACADE SYSTEM 

The aluminium and glass curtain wall system spans from floor to floor and is 
supported by the edge beams with cast-in anchorage brackets.  The double glazed 
facade system is designed to cope with the anticipated building movements 
determined by structural modelling.   
 The external layer of glass is chemically treated with a ceramic silk screen 
frit that helps to reduce the effects of direct solar heat gains and re-radiated heat 
gains.  The ghost-like appearance is created by grading the frit around the 
perimeter of the vision panels from 80% at the body of the building to 40% at the 
edges of the fins and sail.  The frit also modulates the transparency of the vision 
panels and hides the column and spandrel structures. High-energy efficiency, 
maximum thermal performance and optimum visual comfort are achieved by using 
a moderately reflective glass and a low-E coating. 
 The wintergardens located on the northwest and southeast ends of the tower 
have clear glass and framed operable windows protected by cantilevered 
aluminium louvred sunshades. 
 The projecting facade glass that extends beyond and above the building 
footprint is supported by cantilevered structural steel framing attached to the edge 
beams. 
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1.14 FINS, TUSKS, SAILS AND MAST 

 
 

Figure 1.24 Mast and west sail. 
 
 

These elements are fabricated from structural steel and attached to the concrete 
building frame using cast-in embedments and bolts.  The wind forces to be carried 
by these projecting elements have been determined by wind model testing as part 
of the aeroelastic studies carried out by MEL Consultants. 

 

Figure 1.25 Façade fin cantilevered steel framing. 
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 The cantilevered sail needles that project above Level 44 are laterally 
restrained by composite structural steel floor systems incorporated in the two top 
levels of the tower.  The cantilevered needles back span through the high rise 
plantroom between Levels 42 and 44.  Roll formed and flat steel plate sections 
are profiled and continuously butt welded to form the tubular and tapering needle 
sections.  Being of grade BHP-300PLUS, the plate thicknesses used varied 
between 12mm to 40mm.  Cantilevering in excess of 30 metres, the tallest 
needles located on the northwestern end of the sail weigh approximately 28 
tonnes.  The needles reduce in height and plan area as the sail extends southward. 

 
 

Figure 1.26 West sail finite element framing model. 
 
 About their major axis the needles are required to resist ultimate wind 
pressures up to 3.6kPa normal to the sail.  Acting simultaneously, significant 
lateral load on the needles will develop produced by wind shear flow on the sail 
plus wind drag on their projected faces thereby causing potential in plane sway 
movements of the sail.  These movements are significant and will cause racking of 
the glass facade panels if not controlled either by increasing the bending stiffness 
of the needles or by providing in plane bracing of the sail (or both).  To minimise 
the width of the needles, three sets of post-tensioned stainless steel wire bracing 
was installed.  Offset and curved 168mm diameter pipe transoms span between 
the needles and are used to fix welded outriggers that support the 1350mm wide 
by 3700mm high facade panels.  
 To eliminate in plane shear forces developing in the glass facade panels due 
to the potential racking of the sail, the connections of the transom outriggers to 
the dog bone mullions were designed so no restraint against in plane movement 
would develop. 

 

Figure 1.27 Aerial view of south fin projections. 
 

 A continuous 323mm-diameter pipe that also supports a continuous access 
way for maintenance and cleaning of the west sail links the tops of the needles. 
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Figure 1.28 Needle fabrication. 
 

 The tapered tubular steel sections used to fabricate the mast have a wall 
thickness of  12mm.  The mast diameter varies from 1450 mm to 150mm and the 
mast extends 99 metres above the crow’s nest located at Level 34.  Outriggers 
connected to cast in plates set flush in the core provide support for the mast. 

 

Figure 1.29 West sail needle erection. 

1.15 PIAZZA CANOPY 

Ove Arup and Partners were appointed as specialist-engineering consultants to 
develop the concept for the canopy as a thin layer of glass with no secondary 
structural members supported by a "spiders web" cable net, slung between the two 
buildings. 

 

Figure 1.30 Model of Piazza and canopy. 
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 Having a maximum span of approximately 30 metres, the glass canopy has a 
plan area of about 650 square metres and is slung between the residential tower 
and office tower directly above the linking piazza.  The cable net is formed into an 
anticlastic surface to ensure structural resistance to both downward and upward 
loadings and provides support for the frameless suspended glass. 
 The cable net is typically formed of 18mm diameter, high tensile, and 
stainless steel rods connected at each intersection via stainless steel cast nodes. 
The bars specified were cold worked grade 316 stainless steel with a yield at 
0.2% strain of 530MPa.  The glass is mostly 16mm thick laminated, toughened 
and patch supported at each corner with stainless steel cast spiders.  Varying 
diameter and length, stainless steel hangers, makes the link between the glass 
plane and the cable net. 
 To determine more realistic wind forces on the canopy surfaces, a 1 to 400 
scale model of the canopy was pressure tapped and tested in the Monash 
University boundary layer wind tunnel.  Surrounding buildings were modelled to at 
least 500 metres from the canopy. 
 The cable net is a structure that derives its strength and stiffness purely from 
its form; therefore, considerable design effort was spent to ensure the anticlastic 
shape was stiff for both upward and downward loads. 

 

Figure 1.31 View of canopy and lobby entrance. 
 

 To determine the form and shape of the canopy the following loads were 
considered; 
 
• Self weight of the rods, hangers, castings and glass 
• Live loads though not critical for cable net design 
• Wind forces as derived from the wind tunnel testing 
• Prestress applied to the rods forming the supporting net 
• Temperature differentials for a range of plus or minus 25 degrees 
• Seismic forces though found to be negligible for such a light structure 

 
 For the main backstay rods between the "puntone" or bowsprit struts and the 
building anchorages, a higher grade of stainless steel bar was required to resist the 
large forces.  In this instance the bar grade has an UTS of 1000MPa. 
 All connections between rods within the net and at its boundaries were made 
using stainless steel investment castings.  The casting material is grade SAF2205 
that yields at 0.2% strain of between 450MPa and 550MPa. 
 Spiders with one, two, three and four legs were developed to connect the 
glass to the slender circular pipe hangers.  Architecturally shaped, the spiders had 
a requirement to rotate at the neck to accommodate the varying angle between the 
glass plane and the vertical hangers.  Once in place the neck is locked to resist 
bending moments from out-of-balance loads on the glass panels. 
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Figure 1.32 Piazza canopy spider and hanger connections. 
 

 The primary design action for the hangers was mainly for the downward 
tension loads developed by the dead, live and wind loads.  However, upward wind 
loads are sufficient to induce compression in the hangers.  
 In order to verify design and as a check on the manufacturing process, three 
of each type of castings was load tested.  The load testing included proof load 
testing to 1.25 times the calculated working load and then testing to destruction.  
 Due to the irregular shape of the glass and the point supports, non-linear 
finite element analyses were used to size the glass. Typically the glass comprises 
of one sheet of 8mm thick toughened glass and one sheet of heat strengthened 
glass that is laminated with a pvb inter-layer.  Glass panels with dimensions 
greater than about 2000mm had the thickness of each layer increased to 10mm 
thick. 
 Erection of the cable net and the irregular and warping glass plane in the 
correct shape was essential to the structural performance of the canopy. 
 To erect the canopy, six stages were required as follows: 
 
• Erection of the cast-in plates on the commercial and residential towers 
• Erection of the cable net to a snug tight condition 
• Stressing the net 
• Erection of the droppers 
• Erection of the glass panels 
• Sealing and setting the joints between the glass panels 

1.16 BUILDING MAINTENANCE UNIT 

The Building Maintenance Unit (BMU) located on top of the building is one of 
the largest in the world with a total weight of one hundred tonnes.  The BMU 
services almost all of the facade area of the building.  A gantry cradle and a davit 
cradle system service the areas inaccessible to the BMU. 
 When the BMU is parked it is hidden within the building structure, and 
cannot be seen from ground level.  When operating, the entire BMU rises five 
metres from its parked position and then the five stage telescopic jib can extend 
out forty-seven metres to reach all around the perimeter of the building.  The jib 
also luffs up forty-five degrees from the horizontal and luffs down twenty-six 
degrees from the horizontal to bring the cradle as near as possible to the building 
facade. 
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Figure 1.33 Aerial view of BMU and sloping roof. 
 

 
 Operation of the BMU is simplified by the installation of a programmable 
logic controller (PLC).  The PLC, through various counters, limit switches and 
sensors, determines the speed and movement of the BMU functions to give the 
operators the safest and most efficient ride.  The acceleration of the BMU 
functions is also controlled to prevent any ‘whipping’ action in the jib and thus 
provide the operators with a much more comfortable ride. 
 Other functions are also included on the BMU such as; a touch screen 
monitor to provide detailed information about the BMU condition, glass handling 
facilities on the cradle, and telephone communication between the operators in 
the cradle and the Building Superintendent. 

 

Figure 1.34 BMU in operation. 
 

 All static and dynamic loads generated by the BMU are transferred to the 
tower columns and core walls by one storey deep steel trusses located within the 
roof plantroom space.  The same trusses also assist with the strutting of the 
western facade cantilevered sail needles. 
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Figure 1.35 Completed Aurora Place project – December 2000. 
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1.17 PROJECT CONSULTANT TEAM 

1.17.1 Joint Venture Partners 

Lend Lease Developments 
East Asia Property Group 
Mirvac 

1.17.2 Project Management and Construction 

Bovis Lend Lease 

1.17.3 Architecture  

Renzo Piano Building Workshop - Overall concept and facade documentation 
Bovis Lend Lease - Building co-ordination 
Gazzard Sheldon - Detailed documentation 

1.17.4 Structural Engineering 

Bovis Lend Lease - Overall structural concept and detailed design of the 
commercial tower 
Taylor Thomson Whitting - Detailed design of the apartment building 
Ove Arup and Partners - Secondary attached structures and glass canopy 

1.17.5 Facade Engineering 

Arup Facades 
Permasteelisa 
 

1.17.6 Wind Engineering 

MEL Consultants - Professor Bill Melbourne 
 

1.17.7 Geotechnical Engineering 

Coffey Geosciences 
 

1.17.8 Mechanical Engineering 

Ove Arup and Partners 
Environ 
 

1.17.9 Other Building Services 

Bovis Lend Lease 


